1. app_process到zygote
zygote本身是一个Native应用程序,和驱动、内核均无关系,zygote是由init进行根据init.rc文件中的配置进行创建的,具体的配置代码如下:
1.1 zygote启动的init.rc文件定义
1 2 3 4 5 6 7 |
service zygote /system/bin/app_process -Xzygote /system/bin --zygote --start-system-server class main socket zygote stream 660 root system onrestart write /sys/android_power/request_state wake onrestart write /sys/power/state on onrestart restart media onrestart restart netd |
上面的代码中可以看出,zygote的原名是app_precess,在启动的时候是通过Linux下的pctrl系统调用将自己改名为zygote,app_process对应的源文件是App_main.cpp.
1.2 App_main.cpp的main函数
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 |
int main(int argc, char* const argv[]) { // argc = 5, argv = “/system/bin/app_process -Xzygote /system/bin --zygote --start-system-server” …………. AppRuntime runtime(argv[0], computeArgBlockSize(argc, argv)); argc--; // 跳过第一个参数/system/bin/app_precess argv++; // -Xzygote为虚拟机参数,在启动虚拟机是传递到虚拟机 int i; for (i = 0; i < argc; i++) { if (argv[i][0] != '-') { break; } if (argv[i][1] == '-' && argv[i][2] == 0) { ++i; // Skip --. break; } runtime.addOption(strdup(argv[i])); } // Parse runtime arguments. Stop at first unrecognized option. bool zygote = false; bool startSystemServer = false; bool application = false; String8 niceName; String8 className; // 跳过 /system/bin参数 ++i; // Skip unused "parent dir" argument. // 根据参数进行赋值 while (i < argc) { const char* arg = argv[i++]; if (strcmp(arg, "--zygote") == 0) { zygote = true; niceName = ZYGOTE_NICE_NAME; } else if (strcmp(arg, "--start-system-server") == 0) { startSystemServer = true; } else if (strcmp(arg, "--application") == 0) { application = true; } else if (strncmp(arg, "--nice-name=", 12) == 0) { niceName.setTo(arg + 12); } else if (strncmp(arg, "--", 2) != 0) { className.setTo(arg); break; } else { --i; break; } } Vector<String8> args; if (!className.isEmpty()) { // className未赋值,跳过 args.add(application ? String8("application") : String8("tool")); runtime.setClassNameAndArgs(className, argc - i, argv + i); } else { // We're in zygote mode. // 设置指令集、划分虚拟机使用的cache、将cache文件的权限设置为711,同时修改拥有者为root user maybeCreateDalvikCache(); if (startSystemServer) { args.add(String8("start-system-server")); } char prop[PROP_VALUE_MAX]; if (property_get(ABI_LIST_PROPERTY, prop, NULL) == 0) { LOG_ALWAYS_FATAL("app_process: Unable to determine ABI list from property %s.", ABI_LIST_PROPERTY); return 11; } // 添加ABI_LIST String8 abiFlag("--abi-list="); abiFlag.append(prop); args.add(abiFlag); // In zygote mode, pass all remaining arguments to the zygote // main() method. for (; i < argc; ++i) { args.add(String8(argv[i])); } } // 修改线程名为zygote if (!niceName.isEmpty()) { runtime.setArgv0(niceName.string()); set_process_name(niceName.string()); } // 根据得到的参数调用com.android.internal.os.ZygoteInit // args这个vector中包含两个成员,args[0] = “start-system-server” // args[1] = “—abi-list=xxx” xxx代码的是CPU的结构,比如armeabi-v7a, arm64-v8a if (zygote) { runtime.start("com.android.internal.os.ZygoteInit", args, zygote); } else if (className) { runtime.start("com.android.internal.os.RuntimeInit", args, zygote); } else { fprintf(stderr, "Error: no class name or --zygote supplied.\n"); app_usage(); LOG_ALWAYS_FATAL("app_process: no class name or --zygote supplied."); return 10; } } |
2. AppRuntime分析
AppRuntime类的声明和实现都在App_main.cpp中,它是从AndroidRuntime类派生出来的,代码如下:
2.1 AndroidRuntime.cpp的start函数
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 |
// className = "com.android.internal.os.ZygoteInit", options包含两个string8成员 // args[0] = “start-system-server” args[1] = “—abi-list=xxx”, zygote = true void AndroidRuntime::start(const char* className, const Vector<String8>& options, bool zygote) { ALOGD(">>>>>> START %s uid %d <<<<<<\n", className != NULL ? className : "(unknown)", getuid()); static const String8 startSystemServer("start-system-server"); /* * 'startSystemServer == true' means runtime is obsolete and not run from * init.rc anymore, so we print out the boot start event here. */ for (size_t i = 0; i < options.size(); ++i) { if (options[i] == startSystemServer) { /* track our progress through the boot sequence */ const int LOG_BOOT_PROGRESS_START = 3000; LOG_EVENT_LONG(LOG_BOOT_PROGRESS_START, ns2ms(systemTime(SYSTEM_TIME_MONOTONIC))); } } const char* rootDir = getenv("ANDROID_ROOT"); if (rootDir == NULL) { rootDir = "/system"; if (!hasDir("/system")) { LOG_FATAL("No root directory specified, and /android does not exist."); return; } setenv("ANDROID_ROOT", rootDir, 1); } //const char* kernelHack = getenv("LD_ASSUME_KERNEL"); //ALOGD("Found LD_ASSUME_KERNEL='%s'\n", kernelHack); /* start the virtual machine */ // 创建并启动虚拟机 JniInvocation jni_invocation; jni_invocation.Init(NULL); JNIEnv* env; if (startVm(&mJavaVM, &env, zygote) != 0) { return; } onVmCreated(env); /* * Register android functions. */ // 设置虚拟机的JNI环境 if (startReg(env) < 0) { ALOGE("Unable to register all android natives\n"); return; } /* * We want to call main() with a String array with arguments in it. * At present we have two arguments, the class name and an option string. * Create an array to hold them. */ // 调用JNI方法调用com.android.internal.os.ZygoteInit中的main方法 jclass stringClass; jobjectArray strArray; jstring classNameStr; stringClass = env->FindClass("java/lang/String"); assert(stringClass != NULL); strArray = env->NewObjectArray(options.size() + 1, stringClass, NULL); assert(strArray != NULL); classNameStr = env->NewStringUTF(className); assert(classNameStr != NULL); env->SetObjectArrayElement(strArray, 0, classNameStr); for (size_t i = 0; i < options.size(); ++i) { jstring optionsStr = env->NewStringUTF(options.itemAt(i).string()); assert(optionsStr != NULL); env->SetObjectArrayElement(strArray, i + 1, optionsStr); } // 至此,strArray中包含三个成员,分别是 // strArray[0] = “com.android.internal.os.ZygoteInit” // strArray[1] = “start-system-server” // strArray[2] = “—abi-list=xxx” /* * Start VM. This thread becomes the main thread of the VM, and will * not return until the VM exits. */ // className=”com.android.internal.os.ZygoteInit”,调用如下方法后, // slashClassName=”com/android/internal/os/ZygoteInit” char* slashClassName = toSlashClassName(className); jclass startClass = env->FindClass(slashClassName); if (startClass == NULL) { ALOGE("JavaVM unable to locate class '%s'\n", slashClassName); /* keep going */ } else { // 找到ZygoteInit的main方法 jmethodID startMeth = env->GetStaticMethodID(startClass, "main", "([Ljava/lang/String;)V"); if (startMeth == NULL) { ALOGE("JavaVM unable to find main() in '%s'\n", className); /* keep going */ } else { // 调用ZygoteInit的main方法 env->CallStaticVoidMethod(startClass, startMeth, strArray); #if 0 if (env->ExceptionCheck()) threadExitUncaughtException(env); #endif } } free(slashClassName); ALOGD("Shutting down VM\n"); if (mJavaVM->DetachCurrentThread() != JNI_OK) ALOGW("Warning: unable to detach main thread\n"); if (mJavaVM->DestroyJavaVM() != 0) ALOGW("Warning: VM did not shut down cleanly\n"); } |
上述内容都是在Native层运行的,但是在调用ZygoteInit的main方法后,程序便会进入到Java的世界里面,下面来看看上面没有具体解释道的startVm和startReg方法。
2.2 AndroidRuntime.cpp的startVm函数
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
int AndroidRuntime::startVm(JavaVM** pJavaVM, JNIEnv** pEnv, bool zygote) { JavaVMInitArgs initArgs; ………. // 这里很多char buffer的定义,都去掉了 /* 下面很多代码都是用来设置JNI Check选项的。JNI Check顾名思义是指Native层调用JNI函数时,系统所做的检查工作。 例如,调用NewUTFString函数的时候,系统会检查传入的字符串是不是符合UTF-8的要求,JNI Check汉能检查资源是否被正确释放。 但是开启这个选项也是有副作用的,主要表现为: 1)因为检查工作比较耗时,所以会影响系统的运行速度 2)有些检查过于严格,例如上面的字符串检查,一旦报错,调用进程就会abort 所以JNI Check一般是在eng版本会设置,在正式发布的user版本就不设置该选项 */ bool checkJni = false; property_get("dalvik.vm.checkjni", propBuf, ""); if (strcmp(propBuf, "true") == 0) { checkJni = true; } else if (strcmp(propBuf, "false") != 0) { /* property is neither true nor false; fall back on kernel parameter */ property_get("ro.kernel.android.checkjni", propBuf, ""); if (propBuf[0] == '1') { checkJni = true; } } ALOGD("CheckJNI is %s\n", checkJni ? "ON" : "OFF"); if (checkJni) { /* extended JNI checking */ addOption("-Xcheck:jni"); /* with -Xcheck:jni, this provides a JNI function call trace */ //addOption("-verbose:jni"); } property_get("dalvik.vm.execution-mode", propBuf, ""); if (strcmp(propBuf, "int:portable") == 0) { executionMode = kEMIntPortable; } else if (strcmp(propBuf, "int:fast") == 0) { executionMode = kEMIntFast; } else if (strcmp(propBuf, "int:jit") == 0) { executionMode = kEMJitCompiler; } // 设置虚拟机产生的trace文件,主要用于分析系统问题,默认路劲可以通过adb shell连接手机执行getprop | grep trace查看 parseRuntimeOption("dalvik.vm.stack-trace-file", stackTraceFileBuf, "-Xstacktracefile:"); strcpy(jniOptsBuf, "-Xjniopts:"); if (parseRuntimeOption("dalvik.vm.jniopts", jniOptsBuf, "-Xjniopts:")) { ALOGI("JNI options: '%s'\n", jniOptsBuf); } ……….. /* * The default starting and maximum size of the heap. Larger * values should be specified in a product property override. */ parseRuntimeOption("dalvik.vm.heapstartsize", heapstartsizeOptsBuf, "-Xms", "4m"); parseRuntimeOption("dalvik.vm.heapsize", heapsizeOptsBuf, "-Xmx", "16m"); parseRuntimeOption("dalvik.vm.heapgrowthlimit", heapgrowthlimitOptsBuf, "-XX:HeapGrowthLimit="); parseRuntimeOption("dalvik.vm.heapminfree", heapminfreeOptsBuf, "-XX:HeapMinFree="); parseRuntimeOption("dalvik.vm.heapmaxfree", heapmaxfreeOptsBuf, "-XX:HeapMaxFree="); parseRuntimeOption("dalvik.vm.heaptargetutilization", heaptargetutilizationOptsBuf, "-XX:HeapTargetUtilization="); // 接下来很多都是设置虚拟机参数,具体可以自行查看 ………. /* * When running with debug.generate-debug-info, add --generate-debug-info to * the compiler options so that the boot image, if it is compiled on device, * will include native debugging information. */ property_get("debug.generate-debug-info", propBuf, ""); if (strcmp(propBuf, "true") == 0) { addOption("-Xcompiler-option"); addOption("--generate-debug-info"); addOption("-Ximage-compiler-option"); addOption("--generate-debug-info"); } /* * Retrieve the build fingerprint and provide it to the runtime. That way, ANR dumps will * contain the fingerprint and can be parsed. */ parseRuntimeOption("ro.build.fingerprint", fingerprintBuf, "-Xfingerprint:"); initArgs.version = JNI_VERSION_1_4; initArgs.options = mOptions.editArray(); initArgs.nOptions = mOptions.size(); initArgs.ignoreUnrecognized = JNI_FALSE; /* * Initialize the VM. * * The JavaVM* is essentially per-process, and the JNIEnv* is per-thread. * If this call succeeds, the VM is ready, and we can start issuing * JNI calls. */ // 初始化虚拟机 if (JNI_CreateJavaVM(pJavaVM, pEnv, &initArgs) < 0) { ALOGE("JNI_CreateJavaVM failed\n"); return -1; } return 0; } |
接下来看startReg函数:
2.3 AndroidRuntime.cpp的startReg函数
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 |
/* * Register android native functions with the VM. */ /*static*/ int AndroidRuntime::startReg(JNIEnv* env) { /* * This hook causes all future threads created in this process to be * attached to the JavaVM. (This needs to go away in favor of JNI * Attach calls.) */ // 设置Thread类的线程创建函数为javaCreateThreadEtc,androidSetCreateThreadFunc下面分析 androidSetCreateThreadFunc((android_create_thread_fn) javaCreateThreadEtc); ALOGV("--- registering native functions ---\n"); /* * Every "register" function calls one or more things that return * a local reference (e.g. FindClass). Because we haven't really * started the VM yet, they're all getting stored in the base frame * and never released. Use Push/Pop to manage the storage. */ env->PushLocalFrame(200); // 注册JNI函数,gRegJNI是个全局数组,register_jni_procs下面分析 if (register_jni_procs(gRegJNI, NELEM(gRegJNI), env) < 0) { env->PopLocalFrame(NULL); return -1; } env->PopLocalFrame(NULL); //createJavaThread("fubar", quickTest, (void*) "hello"); return 0; } |
androidSetCreateThreadFunc代码如下,非常简单,只是将gCreateThreadFn指向javaCreateThreadEtc
1 2 3 4 |
void androidSetCreateThreadFunc(android_create_thread_fn func) { gCreateThreadFn = func; } |
register_jni_procs则是简单的封装,调用数组元素的MProc函数
1 2 3 4 5 6 7 8 9 10 11 12 |
static int register_jni_procs(const RegJNIRec array[], size_t count, JNIEnv* env) { for (size_t i = 0; i < count; i++) { if (array[i].mProc(env) < 0) { #ifndef NDEBUG ALOGD("----------!!! %s failed to load\n", array[i].mName); #endif return -1; } } return 0; } |
其中gRegJNI定义如下,包含的是要注册到JNI中的函数
1 2 3 4 5 6 |
static const RegJNIRec gRegJNI[] = { REG_JNI(register_com_android_internal_os_RuntimeInit), REG_JNI(register_android_os_SystemClock), REG_JNI(register_android_util_EventLog), ……….. } |
REG_JNI是一个宏,定义如下:
1 2 3 4 5 6 7 8 9 10 11 12 |
#ifdef NDEBUG #define REG_JNI(name) { name } struct RegJNIRec { int (*mProc)(JNIEnv*); }; #else #define REG_JNI(name) { name, #name } struct RegJNIRec { int (*mProc)(JNIEnv*); const char* mName; }; #endif |
当调用array[i].mProc(env)就相当于调用相应的函数
3. Java World
上面分析到,在AndroidRuntime.cpp的start函数的最后调用CallStaticVoidMethod方法,该方法会调用到com.android.internal.os.ZygoteInit的main函数。
3.1 ZygoteInit.java的main函数
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
public static void main(String argv[]) { try { RuntimeInit.enableDdms(); // 开启DDMS功能 /// M: Added for BOOTPROF //MTPROF_DISABLE = "1".equals(SystemProperties.get("ro.mtprof.disable")); MTPROF_DISABLE = false; // Start profiling the zygote initialization. SamplingProfilerIntegration.start(); boolean startSystemServer = false; String socketName = "zygote"; String abiList = null; // 解析传入的argv参数,其中argv就是AndroidRuntime.cpp中的strArray // strArray[0] = “com.android.internal.os.ZygoteInit” // strArray[1] = “start-system-server” // strArray[2] = “—abi-list=xxx” for (int i = 1; i < argv.length; i++) { if ("start-system-server".equals(argv[i])) { startSystemServer = true; } else if (argv[i].startsWith(ABI_LIST_ARG)) { abiList = argv[i].substring(ABI_LIST_ARG.length()); } else if (argv[i].startsWith(SOCKET_NAME_ARG)) { socketName = argv[i].substring(SOCKET_NAME_ARG.length()); } else { throw new RuntimeException("Unknown command line argument: " + argv[i]); } } if (abiList == null) { throw new RuntimeException("No ABI list supplied."); } // 注册Zygote使用的socket registerZygoteSocket(socketName); EventLog.writeEvent(LOG_BOOT_PROGRESS_PRELOAD_START, SystemClock.uptimeMillis()); /// M: Added for BOOTPROF addBootEvent(new String("Zygote:Preload Start")); // 预加载类和相应资源 preload(); EventLog.writeEvent(LOG_BOOT_PROGRESS_PRELOAD_END, SystemClock.uptimeMillis()); // Finish profiling the zygote initialization. SamplingProfilerIntegration.writeZygoteSnapshot(); // Do an initial gc to clean up after startup // 强制执行gc进行一次垃圾回收 gcAndFinalize(); // Disable tracing so that forked processes do not inherit stale tracing tags from // Zygote. Trace.setTracingEnabled(false); /// M: Added for BOOTPROF addBootEvent(new String("Zygote:Preload End")); // startSystemServer为true if (startSystemServer) { // 启动system_server进程 startSystemServer(abiList, socketName); } Log.i(TAG, "Accepting command socket connections"); runSelectLoop(abiList); closeServerSocket(); } catch (MethodAndArgsCaller caller) { caller.run(); } catch (RuntimeException ex) { Log.e(TAG, "Zygote died with exception", ex); closeServerSocket(); throw ex; } } |
3.2 ZygoteInit.java的registerZygoteSocket函数
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 |
// socketName=”zygote” private static void registerZygoteSocket(String socketName) { if (sServerSocket == null) { int fileDesc; // fullSocketName=”ANDROID_SOCKEY_zygote” final String fullSocketName = ANDROID_SOCKET_PREFIX + socketName; try { // 这个应该是在之前有设置相应的环境变量,这里取出来 String env = System.getenv(fullSocketName); fileDesc = Integer.parseInt(env); } catch (RuntimeException ex) { throw new RuntimeException(fullSocketName + " unset or invalid", ex); } try { FileDescriptor fd = new FileDescriptor(); fd.setInt$(fileDesc); // 设置文件描述符 sServerSocket = new LocalServerSocket(fd); // 创建socket本地服务端 } catch (IOException ex) { throw new RuntimeException( "Error binding to local socket '" + fileDesc + "'", ex); } } } |
3.3 ZygoteInit.java的preload函数
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 |
static void preload() { Log.d(TAG, "begin preload"); Log.i(TAG1, "preloadMappingTable() -- start "); PluginLoader.preloadPluginInfo(); Log.i(TAG1, "preloadMappingTable() -- end "); // 预加载位于system/etc/preload-class文件中指定的class // preloadClasses()最后会通过Class.forName(String, Boolean, ClassLoader)来加载preloade-class中指定的class文件 // system/etc/preload_class文件在源码的位置为framework/base/preload-class preloadClasses(); // 预加载资源,包括drawable和color资源 preloadResources(); // 预加载OpenGL preloadOpenGL(); // 通过System.LoadLibrary()方法 // 预加载”android”, ”compiler-rt” 和 “jnigraphics”三个共享库 preloadSharedLibraries(); // 预加载文本资源 preloadTextResources(); // Ask the WebViewFactory to do any initialization that must run in the zygote process, // for memory sharing purposes. WebViewFactory.prepareWebViewInZygote(); Log.d(TAG, "end preload"); } |
3.4 ZygoteInit.java的startSystemServer
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
private static boolean startSystemServer(String abiList, String socketName) throws MethodAndArgsCaller, RuntimeException { long capabilities = posixCapabilitiesAsBits( OsConstants.CAP_BLOCK_SUSPEND, OsConstants.CAP_KILL, OsConstants.CAP_NET_ADMIN, OsConstants.CAP_NET_BIND_SERVICE, OsConstants.CAP_NET_BROADCAST, OsConstants.CAP_NET_RAW, OsConstants.CAP_SYS_MODULE, OsConstants.CAP_SYS_NICE, OsConstants.CAP_SYS_RESOURCE, OsConstants.CAP_SYS_TIME, OsConstants.CAP_SYS_TTY_CONFIG ); /* Hardcoded command line to start the system server */ // 启动参数设置 String args[] = { "--setuid=1000", "--setgid=1000", "--setgroups=1001,1002,1003,1004,1005,1006,1007,1008,1009,1010,1018,1021,1032,3001,3002,3003,3006,3007", "--capabilities=" + capabilities + "," + capabilities, "--nice-name=system_server", "--runtime-args", "com.android.server.SystemServer", }; ZygoteConnection.Arguments parsedArgs = null; int pid; try { // 解析参数,将上面的字符串数据转换成Arguments对象 parsedArgs = new ZygoteConnection.Arguments(args); ZygoteConnection.applyDebuggerSystemProperty(parsedArgs); ZygoteConnection.applyInvokeWithSystemProperty(parsedArgs); /* Request to fork the system server process */ // fork一个子进程,子进程就是system_server进程 pid = Zygote.forkSystemServer( parsedArgs.uid, parsedArgs.gid, parsedArgs.gids, parsedArgs.debugFlags, null, parsedArgs.permittedCapabilities, parsedArgs.effectiveCapabilities); } catch (IllegalArgumentException ex) { throw new RuntimeException(ex); } /* For child process */ // ford返回值等于0,表明是子进程即system_server所在分支代码 if (pid == 0) { if (hasSecondZygote(abiList)) { waitForSecondaryZygote(socketName); } // system_server进程所做的工作,在这里会启动各种支撑系统运行的System server handleSystemServerProcess(parsedArgs); } return true; } |
Zygeto进行fork后,分裂出一个system_server进程,这里主要介绍Zygote,system_server内容后面再介绍
3.5 ZygoteInit.java的runSelectLoop函数
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
private static void runSelectLoop(String abiList) throws MethodAndArgsCaller { ArrayList<FileDescriptor> fds = new ArrayList<FileDescriptor>(); ArrayList<ZygoteConnection> peers = new ArrayList<ZygoteConnection>(); // sServerSocket是在1.3.2创建的Zygote本地服务端socket,现在将其添加到fds[0]中 fds.add(sServerSocket.getFileDescriptor()); peers.add(null); while (true) { StructPollfd[] pollFds = new StructPollfd[fds.size()]; for (int i = 0; i < pollFds.length; ++i) { pollFds[i] = new StructPollfd(); pollFds[i].fd = fds.get(i); pollFds[i].events = (short) POLLIN; } try { // 通过select机制来处理轮询,提高性能,当有pooFds到来,进程会从这里唤醒,否则一直阻塞 Os.poll(pollFds, -1); } catch (ErrnoException ex) { throw new RuntimeException("poll failed", ex); } for (int i = pollFds.length - 1; i >= 0; --i) { // 使用多路复用I/O模型,当有连接或者接收到对端的数据才继续往下执行 // 否则,使用continue,跳出循环后继续等待连接or接受数据 if ((pollFds[i].revents & POLLIN) == 0) { continue; } if (i == 0) { // 表示有新连接到来 ZygoteConnection newPeer = acceptCommandPeer(abiList); peers.add(newPeer); fds.add(newPeer.getFileDesciptor()); } else { // 表示接收到对端发出的数据,调用runOnce()进行数据处理 boolean done = peers.get(i).runOnce(); if (done) { peers.remove(i); fds.remove(i); } } } } } |
runSelectLoop的主体是一个死循环,它将用作zygote的守护体存在
3.6 ZygoteInit.java的runOnce函数
代码如下,省略了大部分内容
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
boolean runOnce() throws MethodAndArgsCaller { ZygoteConnection.Arguments parsedArgs = null; ………….. try { ………. // zygote需为新启动的应用程序生成独立的进程实体,这个工作就委托到forkAndSpecialize函数来做 pid = Zygote.forkAndSpecialize(parsedArgs.uid, parsedArgs.gid, parsedArgs.gids, parsedArgs.debugFlags, ex, parsedArgs.mountExternal, parsedArgs.seInfo, parsedArgs.niceName); } catch (IOException var17) { ………….. boolean ex1; try { // 父进程需要完成的内容 if(pid != 0) { IoUtils.closeQuietly(childPipeFd); childPipeFd = null; ex1 = this.handleParentProc(pid, descriptors, serverPipeFd, parsedArgs); return ex1; } // 子进程需要完成的内容 IoUtils.closeQuietly(serverPipeFd); serverPipeFd = null; this.handleChildProc(parsedArgs, descriptors, childPipeFd, newStderr); ex1 = true; } finally { IoUtils.closeQuietly(childPipeFd); IoUtils.closeQuietly(serverPipeFd); } return ex1; } } |
3.7 Zygote.java的forkAndSpecialize函数
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 |
public static int forkAndSpecialize(int uid, int gid, int[] gids, int debugFlags, int[][] rlimits, int mountExternal, String seInfo, String niceName, int[] fdsToClose, String instructionSet, String appDataDir) { VM_HOOKS.preFork(); int pid = nativeForkAndSpecialize( uid, gid, gids, debugFlags, rlimits, mountExternal, seInfo, niceName, fdsToClose, instructionSet, appDataDir); // Enable tracing as soon as possible for the child process. if (pid == 0) { Trace.setTracingEnabled(true); // Note that this event ends at the end of handleChildProc, Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "PostFork"); } VM_HOOKS.postForkCommon(); return pid; } |
forkAndSpecialize函数实在“孵化”的同时将新创建的进程转换为目标Android应用程序。函数forkAndSpecialize包含三个步骤,分别是preFork、nativeForkAndSpecialize和postForkCommon。preFork通过JNI调用到dalvik_system_ZygoteHooks.cc中的ZygoteHooks_nativePreFork函数,在这个函数中会通过runtime->PreZygoteFork来进行前期初始化。
函数nativeForkAndSpecialize也是一个native方法,实现在com_android_internal_os_
Zygote_nativeForkAndSpecialize中,而之后又会进一步调用到FordAndSpecializeCommon方法。在FordAndSpecializeCommon方法中会通过Linux fork调用孵化出一个新的进程,然后调用到CallStaticVoidMethod这个JNI方法来执行一些孵化后的处理,但是这里并没有进行应用程序相关的业务,真正的业务执行是在runOnce中提到的handleChildProc中,之后的内容这里就不做解释了,后续在AMS中应该会提及。